

Theoretical Chemistry Colloquium

March 14, 2014 (Fri), 16:00-17:00 RCMS, 2nd floor, Chemistry Gallery

Development of the systematic molecular fragmentation method based on DFTB

Dr. Matthew A. Addicoat School of Engineering and Science Jacobs University, Bremen, Germany

Abstract: Systematic Molecular Fragmentation (SMF) is a well-known method that approximates the total electronic energy of a molecule as a sum of energies of fragments in the molecule. Several implementations^{1,2} exist as well as several correction schemes³ improve the accuracy of the method by taking into account interactions between distant, "non-bonded", parts of the molecule. Such calculation schemes are often used to approximate energies of moderately sized molecules (20-100 atoms) using high levels of ab initio theory, such as MPn and CCSD(T), where they reduce the prohibitive, N⁵ or N⁷ scaling to approximately linear (N¹). As the many fragment calculations can be carried out entirely independently, molecular fragmentation schemes represent an ideal approach to carrying out large calculations on PC-clusters. With this in mind, we take the SMF approach and adapt it to the calculation of truly huge (2,000 - 10,000+ atoms) molecules using the Density Functional Tight Binding (DFTB) method.

References:

- 1. Deev, V. and Collins, M. A. J Chem. Phys. 122 154102 (2005)
- 2. He, X. and Zhang, J. Z. J Chem. Phys. 124 184703 (2006)
- 3. Addicoat, M.A. and Collins, M. A. J Chem. Phys. 131 104103 (2009)

Contact: Stephan Irle, 6397, sirle@chem.nagoya-u.ac.jp